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The Microscopic Stress Tensor Field in 
Particle Systems with Many-Body Interactions 
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It is argued that the up to now only existing expression for the microscopic 
stress tensor in the presence of many-body interactions, while being formally 
acceptable, displays some physical shortcomings. These unpleasant features are 
remedied by explicitly constructing and symmetrizing a new stress tensor field. 
With the help of this construction, some recent results on the appearance of 
extremely long-ranged correlations involving the stress tensor field in systems 
with spontaneously broken symmetries are generalized. 
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1. I N T R O D U C T I O N  

The concept of the microscopic stress tensor field a~(r) as originally intro- 
duced by Irving and Kirkwood~ll has its roots in the statistical mechanical 
theory of transport processes. It originates from the desire to construct a 
local quantity which describes the momentum flux in many-particle 
systems with translation-invariant interactions. In other words, one intends 
to fulfill a sort of continuity equation for the momentum density p~(r) 
having the form 

Q 

P~(~) = 7 ~ ~x~ ~(~) Ot 
(1.1) 

A detailed discussion of this topic has been given in an excellent paper by 
Schofield and Henderson/2~ Some recent results on stress tensors are 
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contained in three papers by Requardt and Wagner, ~3 5~ where it is shown 
that such tensor fields play a key role for the implications of all sorts of 
spontaneous symmetry breakdown. In particular, it is the appearance of 
extremely long-ranged correlations involving the stress tensor field that 
signals the existence of density inhomogeneities which are not induced by 
exterior fields. 

The way to construct the stress tensor field a~(r) is well established 
for the case of translation-invariant pair interactions with Hamiltonian 

H=~ p]/2m+ (1/2) ~ V(r~-rj) (1.2) 
i i # j  

The expression for a ~ is of course not unique, since (1.1) fixes it only up 
to a tensor field 6a ~ with 

~ x ~  ~a~Z(r) --- 0 (1.3) 

The commonly used form for cr ~e is (2"3) 

a~Z(r) = - - ( l / m ) ~  p~ p~ D(r- ri) 
i 

+ ( 1 / 2 ) Z  (x~-x~)~V(ri-rjJfs ds 8(r-sr,- (1 - s )  rj) 

(I often write U instead of O/Ox~). 
(1.4) 

If the pair interaction is also rotation invariant, i.e., V(ri-rj)= 
V(lri-rj]), the above stress tensor is symmetric ( ~ =  cr ~)  and this leads 
to an additional continuity equation involving the angular momentum 
density U~(r)=x~y(r)-x~p~(r) due to 

7' 

7 

(1.5) 

While the above results on systems with pair interactions are relatively 
widespread in the literature, knowledge about the form and the properties 
of the microscopic stress tensor in the presence of many-body potentials is 
surprisingly scarce. On the other hand, the treatment of such many-body 
effects is indispensible from a physical point of view, since it is already 
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impossible to describe even the simplest classical fluids, such as, e.g., liquid 
argon, by using pair interactions alone. ~61 

To the best of my knowledge, the only attempt to explicitly construct 
a microscopic stress tensor in the presence of multiparticle potentials has 
been carried through by Schofield and Henderson. C2~ Taking 

H= ~ p~/2m + H~({G}) (1.6) 
i 

with a general translation- and rotation-invariant interaction term 
H~({rk}), they were led to the following result: 

a~(r) = - ( l / m )  ~ P7 p~a(r- ri) 
i 

+ (1 /4)Z Z (x~ -- xf)[(x~ -x~.) c3}'3)' - - ( x ; - - x / )  c~3; 
i , j  y 

7 7 • 7 2 o~ + (1/2)(x, + x )(0i aj - a , e j ) ]  H:({rk] ) 

x Jo ds6(r-sr i - (1-s)  rj) (1.7) 

At first glance, this expression looks relatively well-behaved, indeed fulfills 
the continuity equation (1.1), and is therefore on a formal level absolutely 
acceptable. However, I argue in the following that from a physical point of 
view the stress tensor field (1.7) displays two serious shortcomings. The 
first unpleasant feature to be discussed is the fact that the mere construc- 
tion of the stress tensor (1.7) already requires both translation and rotation 
invariance of the interaction. This is at odds with what one expects on 
physical grounds, namely that translation invariance is already enough to 
imply momentum conservation as is reflected in the continuity equation 
(1.1). Rotation invariance should only be used to derive the additional con- 
servation of angular momentum. This means that translation invariance 
alone should suffice to guarantee the existence of a well-defined stress 
tensor, whereas rotation invariance is only needed for the symmetrization 
of a ~. 

The second disadvantage is based on the fact that the stress tensor 
field as a physical observable should not contain contributions that are 
explicitly dependent on the origin of coordinates. This property is needed 
to exclude an influence of the choice of the coordinate system on the 
(decay) properties of correlation functions involving a ~ (cf. in this respect 
the remarks on p. 499 of ref. 4). Therefore, the stress tensor field should 
have the following property(4/: 

a~B(r)=a~(r; {rk, px})=a~e(r+a; {rk+a, Pk}) (1.8) 
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The stress tensor for pair interactions (1.4) is a case in point for this 
property, since coordinate differences of the form r - r ~ ,  r~-rj, and 
r - s r~ -  (1 - s )  rj are clearly invariant under the substitution (r; {rk}) 
( r + a ;  {rk+a}). 

On the other hand, expression (1.7) in general explicitly violates con- 
dition (1.8) due to the additional appearance of coordinate sums x~'+ @~. 
Therefore, this tensor field is influenced by coordinate system choices and 
is not a merely physical quantity. This means that the stress tensor (1.7) is 
in particular unsuitable for a generalization of the results of refs. 3 5 to 
systems with many-body interactions. 

The preceding discussion has provided sufficient motivation to embark 
in the following sections on the construction and symmetrization of new 
well-defined stress tensor fields for multiparticle interactions which do not 
suffer from the diseases mentioned above. 

2. C O N S T R U C T I O N  A N D  S Y M M E T R I Z A T I O N  OF STRESS 
T E N S O R  FIELDS 

In this section I want to show that it is indeed possible to construct 
a new well-behaved stress tensor field--in particular fulfilling ( 1 . 8 ) -  
whenever the many-body interactions are translation invariant and that it 
can be symmetrized if the interactions in addition show rotation invariance. 
To reach these aims, let us write the Hamiltonian (1.6) somewhat more 
explicitly: 

~ 1  ..... r,,) H= ~ p~/2m ~ h...,, E V~t~(ril 

(Z  ~ denotes summation over pairwise different indices). 
With the momentum density 

(2.1) 

we now calculate 

p~(r )  = ~ ,  p~fi(r  - r,)  
i 

(2.2) 

p~(r) = {p~(r), H} 

- E ~ ,12 ,, k=lZ a; V~')(r~,,..., r,,) ~ ( r  - r, k) (2.3) 
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The kinetic part of this expression is of course not affected by the introduc- 
tion of multibody potentials and already has the desired form. For transla- 
tion-invariant potentials V u~, i.e., 

l 

02 Vtl)( r l ..... r t) =- 0 (2.4) 
k = l  

one can rewrite the interaction part of (2.3) as follows: 

l 

il ---il  ~ j ,  = 1 

x [5(r - r,k) --  5 (r  - rij) ] 

21 y~l : - ?,,...,, 7 2 G V~'~(r,, . . . . .  ~,,) 
j e k  

~ d 
x J0 ds -~s 6 ( r -  sri~ - (1 - s) G) 

xf2 ds}~(x~-x~)J6(r-sr,k-(1-slr,,) (2.5) 
fl 

Therefore we have constructed our stress tensor field 

i 

il " ' ' i l l  j ~ k  

1 

• O~VIlJ(ri, ..... r i , ) fo  d s 6 ( r - - s r i k - - ( 1  - - s ) r i : )  (2.6) 

where we indeed only needed translation invariance of the interaction. 
Moreover, (1.8) is fulfilled. 

However, even if we in addition require rotation invariance of the 
potentials V u), i.e., 

I 

( X k S k  --xkO~-)  V~l)(rl ..... rl) -- 0 (2.7) 
k = l  
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the stress tensor (2.6) is in general not symmetric. To remove this nasty 
feature, we shall use the fact that the definition of the stress tensor is not 
unique since there is the possibility to add a correction term 6a ~ obeying 
(L3). 

General considerations due to McLennan ~v) show us that it is always 
possible to symmetrize a nonsymmetric stress tensor by adding such a 
correction whenever 

r - eel(r) = ~ a'r/~:'(r) (2.8) 

with a sufficiently well-behaved third-rank tensor field q~7(r). In particular, 
this tensor field has to satisfy the analog of (1.8). Indeed, if one defines 

cScr~e(r) = -�89 - creW(r)] 

41- ~ c~V [r/e~/~(r) + r/Ve~(r) - rff~e(r) - q~V~(r)] (2.9) 
7 

one immediately verifies (1.3) by using (2.8), and 

~]~(r) = o-~(r) + &~e(r) 

= � 8 9  + o-'~(r)] 

- �88 ~ aVErF~e(r) + r f f ~ ( r )  - r/~V~(r) - r f l ; ~ ( r ) ]  (2 .10)  
Y 

is obviously symmetric. 
So we have to check whether the antisymmetric part of the stress 

tensor field (2.6) indeed can be brought into line with (2.8) whenever the 
invariance properties (2.4) and (2.7) are valid. To this end we write 

a~e(r) - ~Z~(r) 

f; x V(~ ri, ) ds 6(r - srie - (1 - s) r ,)  

= ~  1 .1  [(x,kai~- X*ka~k) 

I 

• V(~ ..... ri,) f o d s  6 ( r - - S r i k -  (1 --S) r6) (2.11) 
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With the aid of (2.4) and (2.7), we convert this expression into 

a ~ ( r )  - c~e~(r) 

1 ~1 
= [ ( x , k a ,  k - x i ,  a ,~)  

1 

x l/(n(r/, ..... re,) fo ds [6(r - sri~ - (1 - s) ri,) - O(r - ri,)] 

= ~ 1  +.1 
. , .  - - t k  x"  i k - -  i j )  

x Vla(ri~,..., r#) 

x dt ~ 6(r - tsrik - t(1 - s) % - (1 - t) rg~) 

-d,2,7... ,~ [(x~-xge,t-(x,t-x,,)e~l 
x V<~ G) 

1 1 

Xfo dS fo dt ~s (x i~k- -x ; )c~Y~(r - - t s r ik - - (1 - - t s ) r i j )  
7 

Therefore, (2.8) is fulfilled with 

r/=~>,(r ) = _ ~ 1 # 1 
T., i, E... ,, 7 .~  (x , ,  - q) 

x [(x,e_ x,.) a,i- (x,i- ~;) ~]  v ' " ( r , ,  ..... .,,) 

1 s 

x f o d s  fo dt 6 ( r - - t r i k - - ( l - - t )  rij) 

(2.12) 

(2.13) 

Moreover, as required, this expression has the property 

q~&(r) = r/~&(r; {ri}) = t/~&(r + a; {r, + a}) (2.14) 

Thus, the explicit construction and symmetrization of physically 
well-behaved stress tensor fields has been completely carried through. 

Evidently, the above considerations have also supplied us with the 
proper expressions which generalize the results of refs. 3 5 on correlation 
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functions involving stress tensor fields in the presence of spontaneously 
broken symmetries. In addition, I should mention that - -due to (2.8)-- 
there are two different forms for a continuity equation involving the 
angular momentum density, i.e., 

OtO U~(r ) = ~ ~--x-TC [x~a~j(r ) _ x~as~.(r)] (2.15) 

or  

C U~(r ) O at = ~ x ,  / [ x~Y(r ) -x~cr~7(r )+t f f~ ' ( r ) ]  (2.16) 
7 

respectively. This means in particular that there are two distinct ways to 
generalize the considerations of ref. 4 which deal with self-sustained orien- 
tational inhomogeneities. One has the choice to consider correlations 
involving a~ ~ or such involving a ~ and r /~ .  

3. THE Q U A N T U M  CASE 

I conclude the present paper with some remarks on the construction 
and symmetrization of a quantum mechanical stress tensor field. It is easy 
to see that the procedures of Section 2 can largely be carried over. Intro- 
ducing the usual annihilation (creation) operators ~ (~+)  satisfying the 
(anti)commutation relations 

~(r) ~ + (r') + O + (r') O(r) = 6(r - r') 

+ (r) ~ + (r') +_ ~ + (r') ~ + (r) = 0 = ~(r) qJ(r') +_ O(r') ~(r) 
i3.1) 

one has 

p~(r) = (h/2i)[~ + (r) 3~tp(r) - c?~9 + (r) ~(r ) ]  (3.2) 

and 

H =  
~2 

~m f dr V~p+ (r) V@(r) + ~ ~. f drl ...dr, V"~(rl ..... r,) 

X O+(r l ) . . .O+(r , ) t~ ( r , ) . . .O ( r l )  (3.3) 

Therefore 
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0 [p~(r), HI 
at p~(r)- ih 

- 1 8~a~E~'+(r)20(r)]} 

- ~ .  dr~...drt ~ a2V"~(rl ..... r,)6(r-G) 
l �9 k = l  

• O+(rl) .- .  O+(rt) ~fi(r,)"-O(r,) (3.4) 

With the translation invariance condition (2.4) the interaction part is 
written as follows: 

-- ~ ~. dr~.. .dr,  ~ 0; Vl')(r, ..... r,) 6(r--rk) 
l k = l  

x O+(r,).-.~p+(r,) O(rz)-"~(rl) 

V I (  1 L - -  7 ..... r,, 
�9 j,k=l 

x [O(r -- rk) -- 6(r -- rj)] ql + ( r , ) . . .  t~ + (rz) ~9(rl)... Ip(r 1 ) 

, ;  , ff = ~ .  d r , . . . d r ,  7 • O~cV(II(F1 . . . . .  r,) d s ~ . ( x ~ - x f )  
j # k fl 

•  r y )~p+(r l ) . . . ~+(r l )~ ( r l ) . . . ~ ( r l )  (3.5) 

The stress tensor is immediately read off: 

2m c~ '+(r)  J~(r )+JO+(r )  0~0(r) 

1 0%~[0 +(r)~b(r)]} 
2 

-]- ~l ~" f d f l ' "d f '  ~j~k (X~- ~)(~k r ( l ) ( f l  . . . . .  r l '  

;2 x d s 6 ( r - s G - ( 1 - s )  r ; )O+(r l ) . . .O+(r t )O(rz ) . . . t ) ( r l )  

(3.6) 

This tensor field has a symmetric kinetic part and an in general nonsym- 
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metric interaction part. This interaction term is an exact structural analog 
of the classical expression in (2.6). The whole symmetrization procedure of 
Section 2 therefore can also be applied to the quantum case. As the further 
computations and results are completely evident, it is not necessary to give 
them explicitly. 
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